Analysis, Design and Control of a new Generation of Compliant Actuators for Safe HRI

Matteo Laffranchi, Nikos Tsagarakis
and Darwin Caldwell

Istituto Italiano di Tecnologia (IIT)
Dept. of Advanced Robotics (AR)
Introduction

Compliance

- Safety
 - "Soft" collisions
 - Decouple link from the actuator

- Performance/Energy efficiency
 - Energy exchange/conversion
 - Potential energy exploitation
 - Stiffness variation
Introduction

Compliance

• **PROS**
 • Safety
 • Performance
 • Energy efficiency

• **CONS**
 • Precision
 • Bandwidth
 • Complexity, volume, weight
 • Oscillations

(TO BE DAMPED)

Analysis, Design and Control of a new Generation of Compliant Actuators for safe HRI

ICRA 2010, Anchorage, AK, May 3rd - 8th
State of the art

COMPLIANCE

- SEAs
 - Fixed (passive)
 - Variable (control)
- VSAs
 - Variable (passive)

DAMPING

- VPDA
 - Variable (passive)

Tsagarakis, Laffranchi, et al, '09

Pratt, Williamson, '95

Wisse et al, 2007

Verrelst et al, '05

Schiavi, Bicchi, 2008

Wolf et al, 2008

Van Ham et al, 2007

Laffranchi, Tsagarakis, Caldwell, ICRA '10

A Variable Physical Damping Actuator (VPDA) for Compliant Robotic Joints, TuF2.3
Development phases

1. Preliminary analysis
 Define a suitable configuration
 • task
 • stiffness range
 • dimension/weight
 • ...

2. Mechatronic Design and Development of the Actuator
 Mechanics
 • Introduce compliance
 • Introduce damping
 Electronics
 • Power
 • Control

3. Control
 Regulate impedance (how?)
 • Stiffness (?)
 • Damping

SPECS

COMPLEXITY:
VSA: 2X
VSA+damping : 3X
Development phases

1. Analysis between antagonistic and series actuation
 - Energy consumption

2. Design and control of the Compliant actuation unit
 - SEA
 - Fixed passive compliance
 - Variable active compliance

3. Design and control of the VPDA
 - introduces variable physical damping
 - to be used in compliant joints

Laffranchi, Tsagarakis, Cannella, Caldwell, IROS’09
Tsagarakis, Laffranchi, Vanderborght, Caldwell, ICRA’09
Laffranchi, Tsagarakis, Caldwell, ICRA ‘10
Antagonistic VS SEA - Models

• **ANTAGONISTIC**
 - Inverse Kinematics/Dynamics
 \[q_1, q_2(k_{\text{tors}}, \theta, \dot{\theta}, \ddot{\theta}) \]

• **SEA**
 - Inspired by antagonistic
 - Inverse Kinematics/Dynamics
 \[\theta_{\text{in}}, x(k_{\text{tors}}, \theta_{\text{out}}, \dot{\theta}_{\text{out}}, \ddot{\theta}_{\text{out}}) \]
Antagonistic VS SEA - Simulation

ANTAGONISTIC SIMULATOR

SERIAL SIMULATOR

• required work difference
• energy is retained in the springs
• SEA is more efficient (in this case!)

Analysis, Design and Control of a new Generation of Compliant Actuators for safe HRI
ICRA 2010, Anchorage, AK, May 3rd - 8th
Compliant Actuation Unit

Features

- Modular
- Small size
- Introduces “real” passive compliance
- Adjustable active compliance
- Provide full joint state measurement
 - Gearbox position
 - Outer link position
 - Joint torque
Compliant Actuation Unit

Input pulley: rigidly linked with the gear’s outer shaft

Output three spoke part: rigidly linked with the link

Analysis, Design and Control of a new Generation of Compliant Actuators for safe HRI

ICRA 2010, Anchorage, AK, May 3rd - 8th
Control Issues – effect of physical damping

Link position/Voltage TF

- Compliance → 2 mechanical poles: 180° phase lag
- 270° phase lag after mechanical poles: difficult to control
- Phase lag is more smooth with physical damping
 → Easier to control
VPDA

Motivation
• Facilitate control
 – Damp vibrations
 – Inherently passive
 – Damping action is not limited by the mechanical bandwidth of the joint actuator
• Manage energy of the spring

Principle & Features
• Semi-Active Solution
• Introduces “real” physical damping
• Piezoelectric actuation
VPDA - Mechanism

Ground

Torsion Spring

Outer Link

Contact Surfaces

Piezo Stacks

Ground

43x5x5 mm

9g
VPDA - Control

- Inner Force loop
- Outer Damping loop
 - Damping ratio
 - Viscous damping coefficient
- FFWD Block
 - Desired damping level
 - Link velocity

Laffranchi, Tsagarakis, Caldwell, ICRA ’10

A Variable Physical Damping Actuator (VPDA) for Compliant Robotic Joints, TuF2.3
Conclusions

1. Preliminary analysis phase
 • Actuator’s design should depend on:
 • task
 • objective criteria (energy exp., performances, safety..)
 • ...

2. Design
 • Introduction of
 • Compliance
 • (Damping)

3. Control
 • Regulate stiffness (active or passive)
 • Regulate damping (active or passive)
 • Satisfy Objective criteria

AFFECT FINAL PERFORMANCE

DEPENDS ON MECHANICAL CONSTRAINS

EXPLOIT THE VARIABILITY OF IMPEDANCE
Future work

• Implement VPDA in the Compliant Actuation Unit

• Design a Multi DOF damped compliant system

• Control integrated system
Acknowledgements

Work supported by
The European Commission project
Viactors

http://www.viactors.eu/
Special Issue on **Advances on Humanoid Robot Body-ware Design and Development**

Editors:
Nikos G. Tsagarakis
Gordon Cheng
Fethi Ben Ouezdou

Manuscript due:
July 1, 2010
Thank you for your attention

Matteo Laffranchi
Advanced Robotics

Via Morego, 30 16163 Genova
tel: +39 010 71781481
e-mail: matteo.laffranchi@iit.it