Using Compliant Actuators in the Mechanical Design of Robots developed at the VUB

Bram Vanderborght, Ronald Van Ham, Michael Van Damme, Jelle Saldien, Dirk Lefeber

Vrije Universiteit Brussel, Belgium

This work has been funded by the European Commissions 7th Framework Program as part of the project VIACTORS under grant no. 231554.
Overview

• Classical approach: the stiffer the better
 → Good for tracking precision

• New generation: introducing compliance
 – Active compliance (using software)
 • No energy storage, limited bandwith
 – Passive compliance
 (containing passive element)
 → For energy efficiency and safety
• Fixed compliance
 \((\text{Series Elastic Actuator})\)
 – Only one motor
 – Natural dynamics of the system cannot be changed

• Adaptable compliance
 – Two motors required
 – Natural dynamics can be changed
Adaptable compliant actuators

- Equilibrium Controlled Stiffness
- Antagonistic Controlled Stiffness
- Structure Controlled Stiffness
- Mechanically Controlled Stiffness
Antagonistic Controlled Stiffness

- Requires non-linear springs
- Dependent position and stiffness setting
- 2 springs required (part energy of springs is transferred between two springs)

Energy efficiency: exploiting natural dynamics

- Choosing optimal stiffness reduces the energy consumption.
- Developed a compliance controller to select the optimal stiffness.

\[
\begin{align*}
\tilde{p}_1 &= p_m + \Delta \tilde{p} \\
\tilde{p}_2 &= p_m - \Delta \tilde{p}
\end{align*}
\]
MACCEPA 1.0:
Mechanically Adjustable Compliance and Controllable Equilibrium Position Actuator

Paper: Van Ham et al. MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: Design and implementation in a biped robot, Robotics and Autonomous Systems 07
• Shape of the profile disk determines torque-angle curve
• Maccepa 2.0 stiffening characteristic for hopping robots
Design torque-ankle curve

- Torque (Nm)
 - \[y = 0.0174x^2 - 0.0341x \]
 - \(R^2 = 0.9998 \)

- Stiffness (Nm/deg)
 - \[y = 0.0349x \]
 - \(R^2 = 0.9921 \)
Energy efficiency: energy storing capabilities

Energy is stored during one phase and released during next phase. Less powerful motor is needed.

Paper: Vanderborght et al MACCEPA 2.0: Adjustable Compliant Actuator with Stiffening Characteristic for Energy Efficient Hopping, ICRA 09
Human torque-ankle curve
Switchable MACCEPA

(a) Initial contact (IC) to Foot flat (FF).

(b) Foot flat (FF) to maximum dorsiflexion (10°).

(c) Maximum dorsiflexion (10°) to Toe off (TO, 20°).

(d) Swing phase of the gait cycle.
AMPfoot: an Ankle Mimicking Prosthetic foot
Passive compliance is a double-edged sword with respect to robot safety

- Passive actuators can store energy which is a potential danger if not properly controlled
- Use of proxy based sliding mode controller

<table>
<thead>
<tr>
<th></th>
<th>Step</th>
<th>switch between trajectories</th>
<th>Tracking error for sinus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HIC</td>
<td>Fmax</td>
<td>HIC</td>
</tr>
<tr>
<td>PID</td>
<td>4.81</td>
<td>1524</td>
<td>3.02</td>
</tr>
<tr>
<td>PSMC</td>
<td>0.1</td>
<td>233</td>
<td>0.03</td>
</tr>
</tbody>
</table>

unsafe | safe

Paper: Van Damme et al. Proxy-Based Sliding Mode Control of a Planar Pneumatic Manipulator, IJRR 09
Huggable robot Probo

- Research platform for HRI studies with children
- 20 DOF in head to show emotions
- SEA in all DOF for safety and huggable aspect

http://probo.vub.ac.be
Safe and soft interaction

- Safe compliant actuators
- Soft and flexible materials
- Three layers of protection:
 - Plastic covers
 - Soft layer of foam
 - Removable jacket
Conclusion

• Different designs of adaptable compliant actuators
• Used for energy efficiency (exploit natural dynamics, store and release energy)
• Used for safety (decouples inertias of the links)
• Many open questions.
Thank you